The prcbench
package
is a testing workbench for evaluating precision-recall curves, which
requires simple three step processes to perform evaluations of libraries
that create precision-recall plots.
Tool selection by using the tool interface
Test data selection/creation by using the test data interface
Select pre-defined test data for the accuracy evaluation
Define randomly generated test data for the running-time evaluation
Run a evaluation function with the selected tools and test data sets
Accuracy evaluation of precision-recall curves
Running-time evaluation of precision-recall curves
In addition to predifined tools and test data sets, the
prcbench
package provides help functions for users to
define their own tools and datasets.
User-defined test data interface
User-defined test data for the accuracy evaluation
User-defined test data for the running-time evaluation
The prcbench
package provides predefined interfaces for
the following five tools that calculate precision-recall curves.
Tool | Language | Link |
---|---|---|
precrec | R | Tool web site, CRAN |
ROCR | R | Tool web site, CRAN |
PRROC | R | CRAN |
AUCCalculator | Java | Tool web site |
PerfMeas | R | CRAN |
The create_toolset
function generates a tool set with a
combination of the five tools.
create_toolset
functionThe create_toolset
function takes two additional
arguments - calc_auc
and store_res
.
calc_auc
decides whether tools calculate AUC score
or not (Calculation of AUCs are optional for the running-time
evaluation, but not necessary for the evaluation of accurate
precision-recall curves)
store_res
decides whether tools store the calculated
curves or not (actual curves are required for the evaluation of accurate
precision-recall curves)
The following six tool sets are predefined with a different combination of tools along with default argument values.
Set name | Tools | calc_auc | store_res |
---|---|---|---|
def5 | ROCR, AUCCalculator, PerfMeas, PRROC, precrec | TRUE | TRUE |
auc5 | ROCR, xAUCCalculator, PerfMeas, PRROC, precrec | TRUE | FALSE |
crv5 | ROCR, AUCCalculator, PerfMeas, PRROC, precrec | FALSE | TRUE |
def4 | ROCR, AUCCalculator, PerfMeas, precrec | TRUE | TRUE |
auc4 | ROCR, AUCCalculator, PerfMeas, precrec | TRUE | FALSE |
crv4 | ROCR, AUCCalculator, PerfMeas, precrec | FALSE | TRUE |
The prcbench
package provides two different types of
test data sets.
curve
: evaluates the accuracy of precision-recall
curvesbench
: measures running times of creating
precision-recall curvesThe create_testset
function offers both types of test
data by setting the first argument either as “curve” or “bench”.
The create_testset
function takes predefined set names
for curve evaluation. These data sets contain pre-calculated precision
and recall values. The pre-calculated values must be correct so that
they can be compared with the results of specified tools.
The following four test sets are currently available.
name | #scores&labels | #pos labels | #neg labels | expected #points | expected start | expected end |
---|---|---|---|---|---|---|
c1 | 4 | 2 | 2 | 6 | (0, 1) | (1, 0.5) |
c2 | 4 | 2 | 2 | 6 | (0, 0.5) | (1, 0.5) |
c3 | 4 | 2 | 2 | 6 | (0, 0) | (1, 0.5) |
c4 | 8 | 4 | 4 | 9 | (0, 1) | (1, 0.5) |
## C1 test set
testset2A <- create_testset("curve", "c1")
## C2 test set
testset2B <- create_testset("curve", "c2")
## Test data sets can be manually combined to a single set
testset2AB <- c(testset2A, testset2B)
## Multiple sets are automatically combined to a single set
testset2C <- create_testset("curve", c("c1", "c2"))
The create_testset
function uses a naming convention for
randomly generated data for benchmarking. The format is a prefix (‘b’ or
‘i’) followed by the number of dataset. The prefix ‘b’ indicates a
balanced dataset, whereas ‘i’ indicates an imbalanced dataset. The
number can be used with a suffix ‘k’ or ‘m’, indicating respectively
1000 or 1 million.
## A balanced data set with 50 positives and 50 negatives
testset1A <- create_testset("bench", "b100")
## An imbalanced data set with 2500 positives and 7500 negatives
testset1B <- create_testset("bench", "i10k")
## Test data sets can be manually combined to a single set
testset1AB <- c(testset1A, testset1B)
## Multiple sets are automatically combined to a single set
testset1C <- create_testset("bench", c("i10", "b10"))
The prcbench
package currently provides two differnt
types of peformance evaluation.
Accuracy evaluation of precision-recall curves
Running-time evaluation of precision-recall curves
The run_evalcurve
function evaluates precision-recall
curves with the following five test cases. The basic idea is that the
function returns the full score as long as the points generated by a
library matches with the manually calculated recall and precision
values.
Test case | Description |
---|---|
fpoint | Check the first point |
int_pts | Check the intermediate points |
epoint | Check the end point |
x_range | Evaluate a range between two recall values |
y_range | Evaluate a range between two precision values |
The run_evalcurve
function calculates the scores of the
test cases and summarizes them to a data frame.
## Evaluate precision-recall curves for ROCR and precrec with c1 test set
testset <- create_testset("curve", "c1")
toolset <- create_toolset(c("ROCR", "precrec"))
scores <- run_evalcurve(testset, toolset)
scores
## testset toolset toolname score
## 1 c1 ROCR ROCR 5/8
## 2 c1 precrec precrec 8/8
The result of each test case can be displayed by specifying
data_type
= all
of the print
function.
## testset toolset toolname testitem testcat success total
## 1 c1 ROCR ROCR x_range Rg 1 1
## 2 c1 ROCR ROCR y_range Rg 1 1
## 3 c1 ROCR ROCR fpoint SE 0 1
## 4 c1 ROCR ROCR intpts Ip 2 4
## 5 c1 ROCR ROCR epoint SE 1 1
## 6 c1 precrec precrec x_range Rg 1 1
## 7 c1 precrec precrec y_range Rg 1 1
## 8 c1 precrec precrec fpoint SE 1 1
## 9 c1 precrec precrec intpts Ip 4 4
## 10 c1 precrec precrec epoint SE 1 1
The autoplot
shows a plot with the result of the
run_evalcurve
function.
## ggplot2 is necessary to use autoplot
library(ggplot2)
## Plot base points and the result of precrec on c1, c2, and c3 test sets
testset <- create_testset("curve", c("c1", "c2", "c3"))
toolset <- create_toolset("precrec")
scores1 <- run_evalcurve(testset, toolset)
autoplot(scores1)
## Plot the results of PerfMeas and PRROC on c1, c2, and c3 test sets
toolset <- create_toolset(c("PerfMeas", "PRROC"))
scores2 <- run_evalcurve(testset, toolset)
autoplot(scores2, base_plot = FALSE)
The run_benchmark
function internally calls the
microbenchmark
function provided by the microbenchmark
package. It takes a test set and a tool set and returns the result of
microbenchmark
.
## Run microbenchmark for aut5 on b10
testset <- create_testset("bench", "b10")
toolset <- create_toolset(set_names = "auc5")
res <- run_benchmark(testset, toolset)
res
## testset toolset toolname min lq mean median uq max neval
## 1 b10 auc5 AUCCalculator 2.391 3.464 6.427 4.229 5.560 16.5 5
## 2 b10 auc5 PRROC 0.137 0.141 0.179 0.148 0.169 0.3 5
## 3 b10 auc5 PerfMeas 0.056 0.058 0.093 0.065 0.083 0.2 5
## 4 b10 auc5 ROCR 1.482 1.507 1.608 1.532 1.564 2.0 5
## 5 b10 auc5 precrec 3.448 3.518 3.681 3.551 3.656 4.2 5
In addition to the predefined five tools, users can add new tool
interfaces for their own tools to run benchmarking and curve evaluation.
The create_usrtool
function takes a name of the tool and a
function for calculating a precision-recall curve.
## Create a new tool set for 'xyz'
toolname <- "xyz"
calcfunc <- create_example_func()
toolsetU <- create_usrtool(toolname, calcfunc)
## User-defined tools can be combined with predefined tools
toolsetA <- create_toolset("ROCR")
toolsetU2 <- c(toolsetA, toolsetU)
Like the predefined tool sets, user-defined tool sets can be used for
both run_benchmark
and run_evalcurve
.
## Curve evaluation
testset3 <- create_testset("curve", "c2")
scores3 <- run_evalcurve(testset3, toolsetU2)
autoplot(scores3, base_plot = FALSE)
The create_example_func
function creates an example for
the second argument of the create_usrtool
function. The
actual function should also take a testset
generated by the
create_testset
function and returns a list with three
elements - x
, y
, and auc
.
## function (single_testset)
## {
## scores <- single_testset$get_scores()
## list(x = seq(0, 1, 1/length(scores)), y = seq(0, 1, 1/length(scores)),
## auc = 0.5)
## }
## <bytecode: 0x5654974ea630>
## <environment: 0x565496da9400>
The create_testset
function produces a
testset
as either TestDataB
or
TestDataC
object. See the help files of the R6 classes -
help(TestDataB)
and help(TestDataC)
- for the
methods that can be used with the precision-recall calculation.
The prcbench
package also supports user-defined test
data interfaces. The create_usrdata
function creates two
types of test datasets.
User-defined test data for the accuracy evaluation
User-defined test data for the running-time evaluation
The first argument of the create_usrdata
function should
be “curve” to create a test dataset for the accuracy evaluation. Scores
and labels as well as pre-calculated recall and precision values are
required. These pre-calculated values are used to compare with the
corresponding values predicted by the specified tools.
## Create a test dataset 'c5' for benchmarking
testsetC <- create_usrdata("curve",
scores = c(0.1, 0.2), labels = c(1, 0),
tsname = "c5", base_x = c(0.0, 1.0),
base_y = c(0.0, 0.5)
)
It can be used in the same way as the predefined test datasets
selected by create_testset
.
## Run curve evaluation for ROCR and precrec on a predefined test dataset
toolset2 <- create_toolset(c("ROCR", "precrec"))
scores2 <- run_evalcurve(testsetC, toolset2)
autoplot(scores2, base_plot = FALSE)
The first argument of the create_usrdata
function should
be “bench” to create a test dataset for the running-time evaluation.
Scores and labels are also required.
## Create a test dataset 'b5' for benchmarking
testsetB <- create_usrdata("bench",
scores = c(0.1, 0.2), labels = c(1, 0),
tsname = "b5"
)
It can be used in the same way as the test datasets generated by
create_testset
.
## Run microbenchmark for ROCR and precrec on a predefined test dataset
toolset <- create_toolset(c("ROCR", "precrec"))
res <- run_benchmark(testsetB, toolset)
res
## testset toolset toolname min lq mean median uq max neval
## 1 b5 ROCR ROCR 1.5 1.5 1.7 1.6 1.7 2.1 5
## 2 b5 precrec precrec 3.4 3.5 3.7 3.5 3.9 4.2 5
See our website - Classifier evaluation with imbalanced datasets – for useful tips for performance evaluation on binary classifiers. In addition, we have summarized potential pitfalls of ROC plots with imbalanced datasets. See our paper – The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets - for more details.